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Abstract.-

This work presents a Support Vector Machine (SVM)-based clustering method to cluster normal and pathological
ECG signals on a Lempel-Ziv (LZ) complexity and Shannon entropy (SE) space. One normal ECG and three ECG
signals with arrhythmic processes were selected from the MIT-BIH Arrhythmia Database and, those were processed
to remove muscle and breathing noise, electrode motion artifacts, power line interference and DC offset. Each ECG
signal was divided into 35 four-second segments. Training Input data to the SVM-based clustering machine were
obtained by applying the LZ complexity algorithm and SE to each 35 segments of ECG signals. SVC machine was
capable to separate the ECG signals (each signal represents a group) in four clusters (with an accuracy of 95.7 %)
according to the four different ECG records chosen for this study.
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Agrupación Basada en la Complejidad Lempel-Ziv y la Entropı́a de
Shannon de Señales de ECG

Resumen.-

Este trabajo presenta un método de agrupación basado en Máquinas de Vectores de Soporte (SVM, de sus siglas
en inglés Support Vector Machines) para agrupar las señales electrocardiográficas (ECG) normales y patológicas
en un espacio de complejidad Lempel-Ziv y entropı́a de Shannon. Un registro ECG normal y tres registros ECG
con procesos arrı́tmicos fueron seleccionados de la base de datos de arritmias del MIT-BIH, y procesados para
eliminar el ruido por movimientos musculares y por respiración, artefactos debido al movimiento de los electrodos,
interferencia de lı́nea de alimentación y componentes DC. Cada señal ECG se dividió en 35 segmentos de cuatro
segundos. Los datos de entrada para el entrenamiento de la máquina de agrupamiento basada en SVM fueron
obtenidos de la aplicación del algoritmo complejidad LZ y ES a cada uno de los 35 segmentos de las señales de
ECG. La máquina SVC fue capaz de separar las señales ECG (cada señal representa a un grupo) en cuatro grupos
(con una precisión del 95,7 %) de acuerdo a los cuatro registros de ECG seleccionados para este estudio.

Palabras claves: agrupación basada en vectores de soporte, señales ECG, arritmia, complejidad Lempel-Ziv,
entropı́a de Shannon
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1. Introduction

The electrocardiography is a non-invasive pro-
cedure for recording electronically electrical chan-
ges of the heart activity. The record of the electrical
activity of the heart is commonly known as an
electrocardiogram (ECG). By means of the ECG
analysis, a physician can detect and diagnose seve-
ral heart abnormalities. Abnormal cardiac rhythms

Revista Ingenierı́a UC

mailto:svillaza@uc.edu.ve
mailto:cseijas@uc.edu.ve
mailto:acaralli@uc.edu.ve
mailto:svillaza@uc.edu.ve


8 S. Villazana et all / Revista Ingenierı́a UC , Vol. 22, No. 1, Abril 2015, 7-15

of the heart are known as arrhythmias, which
are often detectable on an electrocardiogram.
Arrhythmias often reveal stochastic changes [1]
and may vary from person to person and also
there are dependent on other factor such as age
and patient sex. There are many studies for
detection of arrhythmias [2], by mean of the use
of principal component analysis [2, 3], hidden
Markov models [4], cluster analysis [5], power-
frequency analysis [2, 6].

Kolmorov [7] defined the complexity of a
string of a sequence (of numbers, letters, etc.)
as the number of bits needed to make the
shortest computer program which is capable to
generate that string of sequence. In general, the
complexity measures the randomness grade of
a sequence. Usual measures of complexity are
symbolic pattern analysis and entropy. Lempel-
Ziv complexity (LZC) is an example of symbolic
pattern analysis. LZC of a sequence, which was
defined by Lempel and Ziv [8], measures the
number of different patterns in a sequence

The entropy of a random variable is defined in
terms of its probability distribution, and it is a
good measure of randomness or uncertainty, that
is, entropy is a measure of uncertainty or order in a
signal. Low entropy (close to 0) means high order
or low complexity, and high entropy (close to 1)
means low order or high complexity. Shannon [9]
gave some answers to the question of how to
measure the amount of uncertainty in classical
probability theory. He established the Shannon’s
entropy as the way to measure the amount of
uncertainty by a probability distribution function
on a finite set [10, 11].

Clustering is an unsupervised classification (na-
tural grouping) of data into groups (clusters) [12].
Unsupervised classification means clustering clas-
sifies unknown groups (without a prior labeling of
classes) while supervised classification classifies
known groups (each class has assigned a label
which identifies that class). Clustering process
needs a cluster validation, which is a fundamental
task in clustering analysis [2]. Because of a
validation is a subjective problem, there is no
unique definition of a cluster or unique clustering
result for a given data set. Support Vector Machine

(SVM) is an artificial intelligent branch whose
applications in engineering multidisciplinary areas
are powerful. In general, SVM maps some in-
put vectors (input data) into a high-dimensional
feature space through a nonlinear mapping to
find an optimal separating hyperplane that best
fit the input data. This SVM-based emergent
computation algorithm was developed by Vapnik
and his collaborators [7]. SVM have been imple-
mented in regression, classification and clustering
applications.

Support Vector Clustering (SVC) is an algo-
rithm which can detect arbitrary shapes of clusters
from a data space [13]. SVC maps data points from
data space into a high dimensional feature space
using a Gaussian kernel function [14]. The SVC
algorithm will look for the smallest sphere that
encloses the image of the data in the feature space.
This minimal sphere is defined by some images
of the input data called support vectors. When
the minimal sphere in feature space is mapped
back into data space, it is transformed into several
contours, and each data point is enclosed by one
of them. Of course, each contour is defined by the
support vectors in the data space. Each contour
determines a cluster and, the number of clusters is
controlled by the width parameter of the Gaussian
function; if this parameter is decreased imply an
increasing of clusters and vice versa.

This study proposes a classification process of
ECG signals using as artificial intelligent tool a
Support Vector Clustering (SVC) machine. The
input to SVC corresponds to the LZ complexity
and the Shannon entropy features of ECG signals,
which were selected because they are measures of
order (entropy) or changes of pattern (LZC) of the
ECG signals. This SVC machine is capable to get
several clusters according to the kind ECG signals
involved.

2. Support Vector Clustering

Minimal radio sphere: For a set of data points
xi, i = 1, 2, . . . , n, from data space, and using a
nonlinear mapping Φ (kernel function) from the
data space to high dimensional feature space. Any
function Φ(·) that satisfies the Mercer’s condi-
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tions [15] is candidate to be a kernel function. The
smallest sphere algorithm will find the minimal
radius R subject to the constraints (1)

‖Φ(xi) − a‖2 ≤ R2 + ξi, ξi ≥ 0, (1)

where ‖·‖ is the Euclidean norm, a is the center
of the sphere, and ξi is a slack variable in the
feature space to relax the solution which represents
outliers in the data space.

The Lagrangian function of (1) is the equqtion

L = R2 −

n∑
i=1

(
R2 + ξi − ‖Φ(xi) − a‖2

)
βi

−

n∑
i=1

ξiµi + C
n∑

i=1

ξi (2)

where βi ≥ 0 and µi ≥ 0 are Lagrange multipliers,
C is a constant to take into account outliers, then
C

∑
ξi is a penalty term.

Taking the derivative of (2) with respect to R, a
and ξi and equaling to zero leads

dL
dR

= 2R
(
1 −

∑
βi

)
= 0,⇒

∑
βi = 0, (3)

dL
da

= −
∑

2Φ(xi)βi + 2a
∑

βi = 0,

⇒ a =
∑

Φ(xi)βi, (4)

dL
dξ

= −
∑

βi −
∑

µi +
∑

C = 0,

⇒ βi = C − µi. (5)

The Karush-Kuhn-Tucker conditions [15] esta-
blish that:

ξiµi = 0 (6)(
R2 + ξi − ‖Φ(xi) − a‖2

)
βi = 0. (7)

If a data point has ξi > 0 and βi > 0, (6) implies
that µi = 0, then βi = C. This data point will
be called bound support vector (BSV), because its
image is outside of the minimal sphere. If a data
point has ξi = 0, its image lies inside of the sphere
in the feature space, it can observe from (7) the
term between parenthesis is not equal to zero. And
if a data point has 0 < βi < C, then its image lies
on the surface of the sphere, in this case the data
point are called the support vectors (SV).

Dual form of (2) is obtained substituting Equa-
tions (4)–(6) in it

W =
∑

i

Φ(xi)2βi −
∑

i, j

βiβ jΦ(xi)Φ(xi) (8)

Because of variable µi does not appear in
Equation (8), constraint (5) is changed to

0 < βi < C, (9)

constraint (3) keeps unchanged (
∑
βi = 1).

Kernel matrix is equal to inner product of two
vectors Φ(xi) and Φ(x j) in the feature space,
this is: K(xi, x j) = Φ(xi) · φ(x j). The advantage
of using kernel matrix, the computation is done
in an arbitrary feature space without explicitly
using Φ(x). Kernel matrix using a Gaussian kernel
function, as proposed by [16], is

K(xi, x j) = e
‖xi−x j‖

2

2σ2 , (10)

where parameter σ is the width of the Gaussian.
Dual form (8) after substituting (10) is

W =
∑

i

K(xi, x j)βi −
∑

i, j

βiβ j

∑
i

K(xi, x j). (11)

The distance R(·) of any point at x to the center
a in the feature space is [13]:

R2(x) = ‖Φ(xi) − a‖
= Φ(xi) · Φ(xi) − 2Φ(xi) · a + a · a.(12)

Taking into account (4), equation (12) left as

R2(x) = K(x, x) −
∑

i

βiK(xi, x)

+
∑

i, j

βiβ jK(xi, x j). (13)

Optimization problem consists on finding β va-
lues that maximizes (11) subjects to the constraints
0 < βi < C, and

∑
βi = 1. There are three

possibilities in which each data point can lie with
respect to the minimal sphere: R2(x) = R if x is
a SV, R2(x) > R if x is a BSV, and R2(x) < R
if x is inside of the minimal sphere. Figure 1
shows a representation of different data points in
the minimal sphere.
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Figura 1: Representation of different data points in the
minimal sphere.

One–Class classifier [17, 18]: The main objec-
tive of this learning machine is to find the farthest
hyperplane from the origin in the feature space that
separates all the data in the side (of hyperplane)
opposite to the origin.

min
1
2
‖w‖2 +

1
νn

n∑
i=1

Φi − ρ, (14)

subject to constraints wT Φ(xi) ≥ ρ − ξi, ξi ≥ 0 and,
ρ ≥ 0; where w is the norm of the hyperplane, ρ is
the distance of the hyperplane to the origin, and ν
controls the influence of outliers. The Lagrangian
function of (14)

L =
1
2

wT w +
1
νn

n∑
i=1

ξ − ρ

−

n∑
i=1

αi

(
wT Φ(xi) + ξi − ρ

)
−

∑
βiξi, (15)

subject to αi, βi ≥ 0.
Taking the derivative of (15) with respect to w,

ξi, ρ and equaling to zero leads

dL
dw

= 0 ⇒ w =
∑

αiΦ(xi), (16)

dL
dξi

= 0 ⇒ αi + βi =
1
νn

=, (17)

dL
dρ

= 0 ⇒
∑

αi = 1. (18)

Substituting equations (16)–(18) in (14) and taking
into account K(xi, x j) = Φ(xi) · Φ(x j) leads to the

dual form of (14)

min
1
2

∑
i, j

αiα jΦ
T (xi) · Φ(x j)

= min
1
2

∑
i

α jα jK
(
xix j

)
, (19)

The Karush-Kuhn-Tucker conditions [15] esta-
blish that:

αi

(
wT Φ(xi) + ξi − ρ

)
= 0, (20)

βiξi =

(
1
νn
− αi

)
ξi = 0. (21)

Table 1: Summary of conditions defining Support Vectors
and non-SV.

Support Vector Condition Distance
BSV αi = 1

νn , ξi > 0 wT Φ(x) < ρ
Non-Bound

Support Vector 0 < αi <
1
νn , ξi = 0 wT Φ(x) = ρ

Non-Support
Vector αi = 0, ξi = 0 wT Φ(x) = ρ

Table 1 summarizes several conditions that
define when a data point is a SV and when is a
non-SV, considering equation (20) and (21).

Cluster Assignment: Cluster algorithm is not
capable to know if several points belong to
different clusters [14]. Then is necessary to do a
cluster assignment to each point, this assignment
process consists on using a geometric approach
involving the radius of minimal sphere in the
feature space [14]. It is well known, that the
cluster assignment is an expensive process, then
Lee and Daniels have proposed an efficient cluster
labeling called cone cluster labeling [13] in which
they define a cone between two support vectors
(support vector cone), if two or more cones are
intercepted the support vectors that define each
cone belongs to the same cluster, that is, the
maximum number of cluster corresponds to the
number of SVs. Each cone is defined by the
angle that forms two support vectors. In [13]
authors demonstrated that angle between two
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vector images Φ(xi) and Φ(xj), when the kernel
function is a Gaussian, is defined by

K
(
xi, x j

)
= Φ(xi) · Φ(x j) = cos(θ), (22)

where θ is the angle between the vectors Φ(xi) and
Φ(x j). Equation (10) demonstrates that distances
in data space corresponds to angles in feature
space and vice versa. This last affirmation is
important because the clustering process is done in
the data space using the distance that corresponds
of its image (angle) in the feature space. Lee
and Daniels have demonstrated [13] that when the
function kernel is a Gaussian the support vectors
which lie on the minimal sphere correspond to
the support vector that lie on the optimal plane in
the feature space for the one-class classifier, that
is, support vectors lie on the interception of the
optimal hyperplane with the minimal sphere. For
this reason the machine selected to find the support
vectors is the one-class classifier.

3. Lempel-Ziv Complexity

LZC is a measure of the number of different pat-
terns in a finite sequence. The process to determine
the complexity of a signal consists on transforming
it into a finite sequence made up of just a few
symbols [8, 19]. Discrete-time biomedical signal is
converted into a binary sequence, by comparing it
with a threshold (Td) [20]. Given a discrete signal
X = x(1), x(2), . . . , x(n), it is converted into a finite
sequence S = s(1), s(2), . . . , s(n) of 1’s and 0’s as

s(i) =


0, if x(i) < Td

1, if x(i) ≥ Td

, (23)

i = 1, 2, . . . , n.

To compute LZ complexity of a sequence,
this is scanned from left to right and the com-
plexity counter c(n) is increased by one unit
when a new pattern of consecutive characters is
found [19]. For example, Lempel-Ziv complexity
of s = 001111000011100001111001100011110
is 7, because different patterns observed in s are
0|01|1110|0001|1100001111|00110|0011110.

An upper bound of c(n) [19, 20] is

b(n) =
n

logm(n)
, (24)

where m is the number of different symbols given
in (22).

The normalized LZC C(n) of a arbitrary random
sequence of length n is [20, 21]

C(n) =
c(n)
b(n)

(25)

4. Shannon’s Entropy

Entropy is a measure that quantifies the level
of randomness of a signal. As an intuitive idea,
the entropy of a system is proportional with
the logarithm of the number of its possible
states. Shannon established the SE as the way to
measure the amount of uncertainty by a probability
distribution function on a finite set [10]. Shannon
entropy of the sampled signal X = x1, x2, . . . , xn
is written H(X) and is defined by [11]

H(X) = −

n∑
p(xi) log p(xi), (26)

where p(·) is the probability distribution function,
that assigns a probability between 0 and 1 to xi.

5. Experimental Part

Preprocessing of ECG Signals: ECG data was
obtained from the MIT-BIH Arrhythmia Databa-
se [22]. Each signal of the MIT-BIH Arrhythmia
database was sampled at a frequency of 360
Hz. One normal ECG (record 100) and three
ECG signals with arrhythmic beats (records 101,
105 and 109) were selected from the MIT-BIH
Arrhythmia Database, see Figure 2. All those
signals were preprocessed to remove muscle and
breathing noise, electrode motion artifacts, power
line interference and DC offset. ECG signals
were divided in 140 segments of 35 four-second
segments each of each ECG record. Training data
was obtained from those segments of preprocessed
ECG signals. Sample size (1428 samples) of
the segment was selected to pick at least four
cardiac cycles. The SE and LZC pair value by
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each segment was obtained; Figure 3 shows the
ECG training data in the space SE-LZC space,
each point in Figure 3 represents a segment of
ECG signal, and each segment is identified with
a different symbol.

Figura 2: Forty-second segments of the MIT-BIH Arrhyth-
mia Records.

Figura 3: Data distribution before clustering.

Clustering of ECG Signals: SVC was trained
using LIBSVM [23] toolbox. LIBSVM is based
on an efficient algorithm that permits work with
huge quantity of training data. Table 2 shows a
summary of the several trials done to tune the
SVC machine. As shown in Table 2, the number
of clusters can be adjusted varying the parameters
ν and σ of SVC and the maximal distance to
determine a cluster. Third column of Table 2 is the
distance of the optimal hyperplane to the origin
in the feature space. Fourth column of Table 2 is
the clustering distance, modified by a user-defined
scale factor (radius modifier factor) for clustering
in the SE-LZC plane, which corresponds to (a

non-linear mapping of) the angle that defines the
cone between two support vectors in the feature
space [13], and last column shows the number of
clusters obtained with those parameters.

Figura 4: Clustering of ECG signals using ν = 0.001,
clustering distance = 0.2785, σ = 0.2.

Figura 5: Clustering of ECG signals using ν = 0.001,
clustering distance = 0.1949, σ = 0.2.

Figures 4– 7 show the data point assignment to a
cluster, identification symbols in Figures 4– 7 does
not correspond to the symbols identifiying each
ECG signal in Figure 3. Support vectors are those
data points in a black circles.

Figure 3 is the patron distribution pattern to
tune the SVC parameters (varying σ and ν, and
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Table 2: Summary of parameter tuning of the Support Vector Clustering.

Nu
ν

Sigma
σ

Rho
ρ

#Vs
Clustering
distance

#Clusters

0.001 0.2 0.0303 8 0.2785 1
0.001 0.2 0.0303 8 0.2785 2
0.001 0.2 0.0303 8 0.2785 3
0.001 0.2 0.0303 8 0.2785 4

Figura 6: Clustering of ECG signals using ν = 0.001,
clustering distance = 0.1894, σ = 0.2.

Figura 7: Clustering of ECG signals using ν = 0.001,
clustering distance = 0.1559, σ = 0.2.

the clustering radius) to get the suited number of
clusters. Figure 4 shows as a first aproximation
only one cluster which does not correspond, of
course, to the real groups of the original data.

This solution is the farthest approximation solution
found to the real one.

Figure 5 shows a better approximation of the
clusters. ECG record 100 was correctly identified
as cluster 1 (+). ECG records 101, 105 and 109
were grouped in a cluster 2 (×), which can be
understood as a pathological patterns.

Figure 6 shows clearly how the SVC succesfully
separated ECG records 100 (cluster 1) and 101
(cluster 2) in two different clusters. ECG record
105 was assigned to cluster 2 and ECG record 109
was grouped in the cluster 3 identified with a star
symbol.

Figure 7 shows the best solution found accor-
ding to the original data distribution, see Figure 3.
All the records were successfully grouped in
different clusters. ECG record 105 was assigned
to the cluster 4, which is identified with a diamond
symbol. ECG record 109 was grouped in cluster 3,
it was identified with a star symbol. Some points
(ECG segments) of ECG record 109 were assigned
cluster 4, because of the very close distance
between these two groups. As you can note, the
SVC machine for Figure 4 through Figure 7 is the
same one, the unique difference is the clustering
distance (non-linear mapping of the cone’s angle
in the feature space to the SE-LZC plane modified
by a user-defined scale factor) used to assign the
points to a cluster in the SE-LZC plane. The first
step, before assign the entire non-support vector
points to a group, is to cluster the support vectors
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taking into account the new clustering distance.

It is important to highlight during the clustering
process the following: a) The number of clusters
was obtained manipulating the SVC parameters (σ
and ν) and the clustering distance, b) It is important
to count with asserted criteria of an expert to
interpret the quality of the clusters obtained.

6. Conclusions

Results showed that SVC machine was capable
to cluster successfully several normal and patho-
logical ECG signals. Number of clusters was set
by mean of several trials manipulating the SVC
parameters (σ and ν) and the clustering distance,
which is a scaled non-linear representation of the
cone’s angle in feature space. The cluster labeling
of the rest of (non-support vector) data was done
after the support vectors were clustered, that is,
process of cluster labeling is less expensive com-
pared with another clustering methods, because
the cluster assignment of each point is done after
all cluster are defined, and that assignment depend
on the distance of one point to a support vector
defining a cluster. The overall accuracy of the data
point assigning was 95.7 %.
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